LED驱动电源,LED防水电源,LED调光电源,LED路灯电源,LED投光灯电源-首选优奇斯电器有限公司
 
 
 


 
 
新闻内容
您现在的位置是>>主页>> 新闻内容
 
LED电源噪声测量的挑战及解决之道
发布日期: 2014年2月8日 点击: 1165 责任编辑: 本站

 当今的计算机、PAD、手机、通信系统设备等电子产品,处理速度越来越快,运算能力越来越强,其电源的设计也越来越复杂。进入21世纪后,芯片的制作工艺由0.18um逐步升级到了95nm、65nm、45nm,晶体管的集成度更高、主频更高、供电电压更低,这给产品的电路设计与调试带来了更大的挑战。在90年代,芯片的供电通常是5V和3.3V,使用CMOS或TTL电平,而现在,很多数字电路芯片的核心电压以及IO电平都小于3.3V,以最常用的内存芯片为例,最古老的SDR SDRAM供电电压为3.3V,DDR SDRAM为2.5V,DDR2为1.8V,DDR3为1.5V,而最新的DDR4的供电电压为1.2V,其VREF只有0.6V。这些电路的供电电压越来越小,对电源噪声的要求也更加严格,如何设计低噪声的电源、并且准确测量其电源噪声非常关键,本文将从电源完整性(Power Integrity,简称PI)的角度,简要分析电源噪声测试中可能遇到的问题和相应的解决方法。
 电源噪声与PDN
 
 
 
在通信、计算机产品中,不论是CPU、GPU、FPGA、DDR3,其芯片内部都有成千上万的晶体管,芯片内不同功能的电路有不同电源,比如核心电路的电源VCore、输入输出缓冲(IO Buffer)的电源、内部时钟或PLL的电源等等,这些电源都来自于单板的上直流稳压电源模块。
 
 
 
下图1为某芯片的电源分布网络(Power Distribution Network,简称PDN)示意图,芯片的供电环路从稳压模块VRM(Voltage Regulator Module)开始,经过pcb上电源地网络、芯片的ball引脚、芯片封装的电源地网络,最后到达IC上的硅片。
 


 
 
当芯片上各种功能电路同时工作时,稳压电源模块VRM无法实时响应负载对于电流需求的快速变化,芯片上的电源电压发生跌落,从而产生电源噪声,为了保证输出电压的稳定,需要在封装、PCB上使用去耦电容和合理的电源平面与地平面对。从目前电源完整性分析的角度看,业内普遍认为在PCB上可以处理到几百兆赫兹PI问题,更高频率的电源完整性问题需要在芯片和封装设计时解决。原因在于:
 
 
 
l,在板级PI设计时,需使用容值较小、等效串联电感(ESL)较小的陶瓷电容来去耦,比如0603封装的0.1uf、10nf电容,但是电容的PWR/GND布线、过孔带来的寄生电感会增大电感,使去耦电容的有效工作频率降低,很难超越几百MHz;
 
 
 
2,即使板级PI设计能解决GHZ的PI问题,电源的电流还需经过芯片焊接到PCB的ball、封装上的电源/地平面,到达用电的晶体管还有较长的距离,效果不大。PI设计时把高于几百MHz的去耦放到了芯片和封装上,PCB上解决kHz – 几百MHz的去耦问题。
 
 
 
因此,对于板级的电源噪声测试,使用带宽500M以上的示波器足够了。由于篇幅有限,关于芯片级PI和板级PI设计、去耦电容选择等,建议查阅电源完整性书籍。
 
 
 
电源噪声(Power Noise)与电源纹波(Power Ripple)
 
 
 
电源噪声与纹波是工程师经常遇到且容易混淆的两个概念,尽管是非常普及的测试项目,但是还没有国际协会和标准组织定义如何测量DC电源的电源纹波和噪声。如下图2所示为直流电源输出部位测量到的纹波和噪声示意图,蓝色波形为纹波,红色波形为噪声,通常纹波的频率为开关频率的基波和谐波,而噪声的频率成分高于纹波,是由板上芯片高速I/O的开关切换产生的瞬态电流、供电网络的寄生电感、电源平面和地平面之间的电磁场辐射等多种因素产生的。近年来,业界已逐渐统一认识,认为在PDN的source端(VRM)测量的是电源输出的纹波,而在sink端(芯片)测量的是电源噪声。
 
 
 
对于电源纹波的测量,业界常用示波器限制20M带宽后,测量的DC电源输出的波形峰峰值即为电源纹波。建议在以下几种情况时测量电源纹波(带宽限定为20MHz):
 
 
 
1,电源芯片厂商的数据手册规定时
 
 
 
2,测量AC-DC电源时,比如ATX电源的输出
 
 
 
3,测量稳压电源模块输出时
 
 
 
4,测量直流参数时,或板上电路工作速率很低时
 


从PI的角度来看,无论是线性LDO电源、还是开关电源,都只能提供低频段(kHz-MHz)的稳定电源输出,电源的高频部分是依靠PCB、封装以及芯片内具有快速充电、放电功能的电容来实现的。当板上芯片工作速率在几十MHz以上时,必须测量电源噪声,探测点尽量要靠近待测试芯片的电源引脚。

 当今的计算机、PAD、手机、通信系统设备等电子产品,处理速度越来越快,运算能力越来越强,其电源的设计也越来越复杂。进入21世纪后,芯片的制作工艺由0.18um逐步升级到了95nm、65nm、45nm,晶体管的集成度更高、主频更高、供电电压更低,这给产品的电路设计与调试带来了更大的挑战。在90年代,芯片的供电通常是5V和3.3V,使用CMOS或TTL电平,而现在,很多数字电路芯片的核心电压以及IO电平都小于3.3V,以最常用的内存芯片为例,最古老的SDR SDRAM供电电压为3.3V,DDR SDRAM为2.5V,DDR2为1.8V,DDR3为1.5V,而最新的DDR4的供电电压为1.2V,其VREF只有0.6V。这些电路的供电电压越来越小,对电源噪声的要求也更加严格,如何设计低噪声的电源、并且准确测量其电源噪声非常关键,本文将从电源完整性(Power Integrity,简称PI)的角度,简要分析电源噪声测试中可能遇到的问题和相应的解决方法。
 电源噪声与PDN
 
 
 
在通信、计算机产品中,不论是CPU、GPU、FPGA、DDR3,其芯片内部都有成千上万的晶体管,芯片内不同功能的电路有不同电源,比如核心电路的电源VCore、输入输出缓冲(IO Buffer)的电源、内部时钟或PLL的电源等等,这些电源都来自于单板的上直流稳压电源模块。
 
 
 
下图1为某芯片的电源分布网络(Power Distribution Network,简称PDN)示意图,芯片的供电环路从稳压模块VRM(Voltage Regulator Module)开始,经过pcb上电源地网络、芯片的ball引脚、芯片封装的电源地网络,最后到达IC上的硅片。
 


 
 
当芯片上各种功能电路同时工作时,稳压电源模块VRM无法实时响应负载对于电流需求的快速变化,芯片上的电源电压发生跌落,从而产生电源噪声,为了保证输出电压的稳定,需要在封装、PCB上使用去耦电容和合理的电源平面与地平面对。从目前电源完整性分析的角度看,业内普遍认为在PCB上可以处理到几百兆赫兹PI问题,更高频率的电源完整性问题需要在芯片和封装设计时解决。原因在于:
 
 
 
l,在板级PI设计时,需使用容值较小、等效串联电感(ESL)较小的陶瓷电容来去耦,比如0603封装的0.1uf、10nf电容,但是电容的PWR/GND布线、过孔带来的寄生电感会增大电感,使去耦电容的有效工作频率降低,很难超越几百MHz;
 
 
 
2,即使板级PI设计能解决GHZ的PI问题,电源的电流还需经过芯片焊接到PCB的ball、封装上的电源/地平面,到达用电的晶体管还有较长的距离,效果不大。PI设计时把高于几百MHz的去耦放到了芯片和封装上,PCB上解决kHz – 几百MHz的去耦问题。
 
 
 
因此,对于板级的电源噪声测试,使用带宽500M以上的示波器足够了。由于篇幅有限,关于芯片级PI和板级PI设计、去耦电容选择等,建议查阅电源完整性书籍。
 
 
 
电源噪声(Power Noise)与电源纹波(Power Ripple)
 
 
 
电源噪声与纹波是工程师经常遇到且容易混淆的两个概念,尽管是非常普及的测试项目,但是还没有国际协会和标准组织定义如何测量DC电源的电源纹波和噪声。如下图2所示为直流电源输出部位测量到的纹波和噪声示意图,蓝色波形为纹波,红色波形为噪声,通常纹波的频率为开关频率的基波和谐波,而噪声的频率成分高于纹波,是由板上芯片高速I/O的开关切换产生的瞬态电流、供电网络的寄生电感、电源平面和地平面之间的电磁场辐射等多种因素产生的。近年来,业界已逐渐统一认识,认为在PDN的source端(VRM)测量的是电源输出的纹波,而在sink端(芯片)测量的是电源噪声。
 
 
 
对于电源纹波的测量,业界常用示波器限制20M带宽后,测量的DC电源输出的波形峰峰值即为电源纹波。建议在以下几种情况时测量电源纹波(带宽限定为20MHz):
 
 
 
1,电源芯片厂商的数据手册规定时
 
 
 
2,测量AC-DC电源时,比如ATX电源的输出
 
 
 
3,测量稳压电源模块输出时
 
 
 
4,测量直流参数时,或板上电路工作速率很低时
 


从PI的角度来看,无论是线性LDO电源、还是开关电源,都只能提供低频段(kHz-MHz)的稳定电源输出,电源的高频部分是依靠PCB、封装以及芯片内具有快速充电、放电功能的电容来实现的。当板上芯片工作速率在几十MHz以上时,必须测量电源噪声,探测点尽量要靠近待测试芯片的电源引脚。

电源噪声测量的解决之道
 
 
 
考虑到以上几种影响噪声测量的因素,HDO4000示波器加上1:1无源传输线探头,通道阻抗设为DC50是目前最好的测量电源噪声方案。HDO4000为12比特分辨率的高清示波器,能提供更高的分辨率,更小的量化误差,更灵活的偏置电压设置、更低的底噪。
 
 
 
如下图6为HDO4000示波器使用1:1无源探头测量某机顶盒的电源噪声测试结果,可以看到,电源电压为1.27V,其电源噪声峰峰值不超过18.22mV,统计后的平均值为16.2575mV。在图5和表格2中,使用普通8位ADC示波器测量相同电源,得到的电源噪声分别为21.573mV和22.371mV,很可能是由于后者的底噪较大引起的。
 
 
 
同时,使用了示波器独特的频谱分析软件,在频域中实时观察电源噪声的主要来源。从图中左侧的列表中可以看到,噪声频谱的第一个峰值频点为332KHz,应该是板上332KHz的开关电源引入的,该频点的幅度比其他峰值频点大20dB,说明它是噪声的主要来源;另外,还可以看到200MHz的频点,应该是板上200MHz的时钟引入的噪声。
 
 
 


如果使用常规实时示波器测量电源噪声,当垂直刻度调到5mV/div时,偏置电压可能在1V以内,无法测量大于1V的电源,通常,在1:1的无源传输线探头中串联隔直电容,把待测试信号隔直后就可以测量了。这种测试方法的缺点为隔直电容会影响测试结果,选择不同的电容可能有不同的测试结果,增加了测试的不确定性。
 
 
 
对于低电压电源的噪声测试,以下为各种测试方案,排前面的为优选的测试方案。
 
 
 
1,低噪声12位ADC示波器HDO4000 + 1倍衰减无源传输线探头
 
 
 
2,常规8位ADC示波器 + 1倍衰减无源传输线探头
 
 
 
3,常规8位ADC示波器 + 隔直电容 + 1倍衰减无源传输线探头

本站搜索词:LED驱动电源,LED防水电源,LED调光电源,LED路灯电源,LED投光灯电源
 
版权所有 江门市优奇斯电器有限公司 电话:0750-3952618 传真:0750-3978053 粤ICP备11044115号-2  
本站搜索词:大功率LED电源,LED电源驱动器,LED路灯电源,LED防水电源,LED开关电源